
 

 

 

 

 

 

 

 

The readability and similarity of 
ChatGPT with respect to Stack Overflow

 
Alan McKay, Hayden Westphal, Jordyn Iannuzzelli, Nathan Hine 

University of Iowa, Group 7 
{amckay, hawestphal, jiannuzzelli, nhine}@uiowa.edu 



1. INTRODUCTION 
With the rapid development of artificial intelligence, 

language models such as ChatGPT have made considerable 

progress in generating human-like responses to prompts. 

However, it is unclear how well these language models 

perform compared to other humans, particularly in terms of 

readability. Readability is the ease with which a text can be 

understood by a reader, and is influenced by factors like 

sentence length, word choice, and overall coherence. 

Stack Overflow is a popular online community where 

developers can ask and answer technical questions related 

to programming. However, the vast amount of information 

on Stack Overflow can be overwhelming and time-

consuming to navigate. To address this issue, language 

models such as ChatGPT are leveraged to generate answers 

to Stack Overflow prompts. However, it remains unclear 

how well these language models perform compared to the 

answers provided by human supplied answers on Stack 

Overflow. 

This research paper aims to compare the quality and 

similarity of answers generated by ChatGPT with respect to 

human participants on Stack Overflow. Specifically, we 

will analyze the readability and similarity of answers 

provided by ChatGPT and compare them to the answers 

provided by accounts on Stack Overflow for the same 

prompt. 

To achieve this goal, we will select a set of Stack Overflow 

prompts and their top-rated answers by the users. We will 

then use ChatGPT to generate answers to the same prompts 

and compare the readability and gauge similarity. 

This research is important because it will display the 

strengths and limitations of language models such as 

ChatGPT and provide insight into how they may be 

improved. Furthermore, the results of this study may have 

implications for the development of language models in 

areas such as education, where similarity and readability 

are key factors in assessing the effectiveness of educational 

materials. 

In this research paper, we aim to answer several questions 

related to ChatGPT's responses to programming-related 

questions. Specifically, we want to compare the similarity 

between ChatGPT's responses and those found on Stack 

Overflow, a popular online community for programming 

questions and answers. By addressing these questions, we 

hope to provide insights into the similarity and readability 

of ChatGPT's responses, as well as its potential use as a 

tool for technical support and education in the field of 

programming.  

Our analysis has revealed several important findings related 

to ChatGPT's responses to programming-related questions. 

Firstly, we found that ChatGPT's responses have similar 

readability scores to higher rated Stack Overflow 

responses, indicating that ChatGPT can generate responses 

that are easy to read. However, we also found that Stack 

Overflow responses tend to be slightly easier to read than 

ChatGPT’s. Secondly, our analysis showed that ChatGPT's 

responses are highly alike to the Stack Overflow responses 

of higher post ratings, indicating that ChatGPT has learned 

programming concepts and can generate responses that are 

similar. Overall, our findings suggest that ChatGPT has 

potential as a tool for technical support and education in the 

field of programming, and further research is needed to 

improve the readability of its responses. 

 

2. RELATED RESEARCH 
The paper, ‘Learning to Program Using Online Forums’ 

(Lau and Mitrovic) [5] shows that Stack Overflow is a 

common first resource when it comes to discussing code 

solutions. This is discussed in the context of Reddit, one of 

the largest internet forums. Intuit would dictate the 

diffusion of content from Stack Overflow for its ease of 

access and that its content would be diffused beyond 

Reddit. This provides a strong basis of comparison to 

potential AI generated answers.   

Similarity for this study is evaluated with respect to 

answers supplied on Stack Overflow. A study by Chen et 

al. [2018] discusses behavioral patterns of answerers on the 

platform. Specifically, a look at correlation of complexity 

of answer, and frequency an answerer provides an answer, 

the time taken for an answer to be provided, etc. It finds 

that non-frequent writers of solutions tend to more complex 

problems – problems which take more time to have a 

solution provided. The complement is also noted, where 

86-96% of accepted answers are written by frequent 

answerers. This suggests a possible bias in terms of these 

two types of answers in which ChatGPT, a single entity, 

may not adhere to- more discussion on this in the 

limitations section below.  

Not only does this study look at textual measures of 

similarity, but also considers code similarity. A paper by 

Schleimer et al. [2003] provides a formal framework in 

which code similarity can be measured. The application of 

this framework is given by Stanford’s MOSS web 

application.[6] 

 

3. METHODS 
Information was taken from Stack Overflow and ChatGPT, 

including questions, answers, and dates. After collection, 

the data was run through a series of methods for analysis, 

such as cosine similarity, Dale Chall readability scoring, 

and Flesch reading ease scores. The text below outlines the 

retrieval processes for the data in both Stack Overflow and 

ChatGPT, as well as the explanation for each analyzation 

method and calculation. 



Section 3.1 – Gathering Stack Overflow Data 

The first phase of data collection included gathering 

questions and answers from users on Stack Overflow. To 

ensure there were not any ChatGPT generated answers, the 

data collected was from prior to 2019 (ChatGPT-3's official 

release date; it should be noted that the program was given 

public access in 2022). All the data that was scraped from 

Stack Overflow was obtained in posts through a public 

API. The questions were selected from the categorization 

tags Python. Java, and JavaScript. 1100 top-rated questions 

were selected in each of these categories. In addition to 

textual information, a responses’ date was maintained in 

the collection for temporal analysis and verification. 

Furthermore, an answer gathered from Stack Overflow had 

its associated post-rating maintained within the same 

dataset. The data was then compiled and stored as JSON. 

See Python_1000Q.json, Java_1000Q.json, and 

Javascript_1000Q.json in the provided repository for 

details. [7] 

 

Section 3.2 – Gathering ChatGPT Output 

The next phase of data collection involved taking the 

questions from the Stack Overflow posts, feeding them to 

the ChatGPT API, and inserting the responses into the 

JSON dataset for later analysis. 

The main method used in gathering these ChatGPT 

responses is the OpenAI API. A script was developed to 

iterate through the set of Stack Overflow questions and 

feed the API for each of these questions. The textual result 

was saved in our data structure verbatim along with the 

date on which it was generated.  

 

Section 3.3 – Application of measures; Readability, Cosine 

Similarity, and Moss Similarity 

For analysis, the primary foci were cosine similarity and 

readability. The key was to find if there were any 

similarities and trends between both the Stack Overflow 

and ChatGPT generated answers.  

Cosine similarity is a method of measuring the similarity of 

two vectors of attributes and returns a value between –1 

and 1. A result of –1 would identify opposite vectors 

whereas a value of 1 would identify proportional vectors. 

Below is the formula used with cosine similarity, with 

attributes represented as A and B and theta as the similarity 

score. 

 

Formula 3-1: The formula for cosine similarity 

 

As can be seen, the cosine similarity function is simply the 

dot product of the two vectors divided by each’s 

magnitude, equal to cosine of theta. This data was gathered 

and displayed in bar graphs as seen in the results section.  

Regarding this study, for every question pulled from Stack 

Overflow, one ChatGPT response was generated. For every 

ChatGPT response to a given question a cosine score was 

generated between the ChatGPT response and each 

member of the set of Stack Overflow answers associated 

with the question.  

For readability, the module ‘Textstat’ in Python offered 

numerous methods in calculating readability, along with 

providing a few other statistics such as the quantity of 

complex words, syllables in the texts, and other general 

statistics on the text such as word count. Below are the 

formulas for each method provided in the results section. 

 

206.835 − 1.015(
𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑𝑠

𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
) − 84.6 (

𝑡𝑜𝑡𝑎𝑙 𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑𝑠
) 

Formula 3-2: The formula for Flesch Reading Ease 

 

Score Difficulty 

90-100 Very Easy 

80-89 Easy 

70-79 Fairly Easy 

60-69 Standard 

50-59 Fairly Difficult 

30-49 Difficult 

0-29 Very Confusing 

Table 3-1: This table serves as a key for understanding the scores 

for the Flesch Read Ease method. 

 

 

0.1579 (
𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡 𝑤𝑜𝑟𝑑𝑠

𝑤𝑜𝑟𝑑𝑠
) + 0.0496 (

𝑤𝑜𝑟𝑑𝑠

𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
) 

Formula 3-3: The formula for Dale-Chall Readability 

 

 

 

 

 



Score Understood by 

4.9 or 

lower 
average 4th-grade student or lower 

5.0–5.9 average 5th or 6th-grade student 

6.0–6.9 average 7th or 8th-grade student 

7.0–7.9 average 9th or 10th-grade student 

8.0–8.9 average 11th or 12th-grade student 

9.0–9.9 
average 13th to 15th-grade (college) 

student 

Table 3-2: This table serves as a key for understanding the scores 

for the Dale-Chall method. 

 

4.71 (
𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

𝑤𝑜𝑟𝑑𝑠
) + 0.5 (

𝑤𝑜𝑟𝑑𝑠

𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
) − 21.43 

Formula 3-4: The formula for Automated Readability Index (ARI) 

 

A note for the ARI: the returned result represents the grade 

level. For instance, if the result reads 5, then it would be 

understood by a child in fifth grade, and 6.5 would 

represent education from sixth to seventh grade. 

 

A measure of code similarity also needs to be considered. 

MOSS is the tool used here. MOSS is a type of copy-

detection algorithm that determines the likeliness that one 

document has copied code from another. The algorithm 

employs mechanisms to ensure whitespace insensitivity, 

noise suppression, and position independence. 

Instead of comparing every substring of a document to 

every substring of another, MOSS leverages document 

fingerprinting. A set of hashes is generated for each 

document, and comparisons are made between the 

fingerprints instead. This is done by first preprocessing the 

document to remove irrelevant features. A sequence of 

hashes of the k-grams of the preprocessed document are 

generated. Then a subset of hashes is selected for use as a 

document’s fingerprint. Finally, pairs of documents with a 

high number of matching fingerprints are flagged. 

Documents that are flagged are paired and a line count is 

returned. This line count represents the number of lines that 

are similar. The individual documents within the pairing 

also have a percentage assigned. These percentages indicate 

the amount of the document that is like the other; the 

percentage of code that is shared from the point of view of 

the individual document in question. 

 

4. DATA 
This paper describes the data used in an analysis of 

ChatGPT's responses to 1100 questions on three 

programming topics - Python, JavaScript, and Java. The 

questions were chosen to cover a broad range of topics 

within each language, including syntax, data structures, 

algorithms, and libraries.  

The questions selected represent the highest rated 

questions, thus are questions that are deemed commonly 

asked by the users. The dataset comprises the questions and 

the corresponding responses generated by ChatGPT. In this 

section, we will provide a detailed description of the 

dataset, including its size, structure, and the features used in 

the analysis.  

We also calculated the mean and standard error of the mean 

for several measures (Fig 4-1, Fig 4-2), including cosine 

similarity, Flesch readability, Dale readability, and ARI 

readability. These measures allowed us to quantify the 

similarity between ChatGPT's responses and user responses 

on Stack Overflow, as well as the readability of these 

responses. The use of mean and standard error of the mean 

allowed us to estimate the average value of each measure 

and the variability around that average (Formula 4-1, 

Formula 4-2). This analysis enabled us to learn more about 

ChatGPT's responses and how it stacks up against Stack 

Overflow responses from users. 

 

Figure 4-1 and 4-2: Preliminary measures of cosine similarity and 

readability scores. 

 

Section 4.1 – Data Collection 

For our research, we collected datasets of 1100 

programming-related questions across three popular 

programming languages: Python, JavaScript, and Java. We 

 

(Figure 4-1) 

 

(Figure 4-2) 

 

(Formula 4-1) 

 

(Formula 4-2) 



obtained human-generated responses to each of these 

questions through Stack Overflow. In addition, we used the  

OpenAI API to generate responses to each question using 

ChatGPT, a state-of-the-art language model. The resulting 

datasets allowed us to compare the similarity and 

readability of ChatGPT's responses to Stack Overflow 

responses for each programming language. The use of both 

human-generated responses from Stack Overflow and 

ChatGPT-generated responses provides a comprehensive 

view of the performance of ChatGPT as a tool for 

programming-related tasks. 

Section 4.2- Dataset Size 

The dataset is comprised of three JSON files, one for each 

programming language. Each language has 1100 entries of 

data, for a total of 3,300 ChatGPT answers to questions 

from Stack Overflow. Attached to this combination is a set 

of Stack Overflow answers for each question. 

Section 4.3- Dataset Structure: 

The schema of the JSON files are as follows: 

• The outer set of keys are an identifier representing 

the question identifiers as defined in the Stack 

Exchange API. Each of these objects contains four 

keys: stack question, stack answers, ChatGPT 

answers, and scoring. These keys point to nested 

objects contain as follows: 

• stack question contains a creation date, title, score, 

and body as defined in the Stack Exchange API. 

• stack answers contain a set of keys which are 

answer identifiers as defined in the Stack 

Exchange API. Each of these keys contain the 

attributes is_accepted, score, creation_date, and 

last_edit_date. 

• ChatGPT answers contain a tuple with two 

elements. The first element is text returned from a 

prompt of the ChatGPT API. The second element 

is the date on which it was generated. 

•  scoring contains the following keys: cosine, moss, 

flesh, dale, and ari, tracking relevant 

measurability scoring for the relevant identifiers 

involved. 

•  

5. TOOLS 
This section describes the tools used in the research paper 

to analyze the data collected on ChatGPT's responses to 

programming-related questions. The analysis involved 

several tasks, including data cleaning, feature extraction, 

and visualization. To accomplish these tasks, we used a 

combination of Python programming language and various 

libraries, including the OpenAI API, JSON, and Matplotlib. 

Section 5.1- Python 

Python is a popular high-level programming language 

widely used for data analysis and scientific computing. It is 

known for its simplicity, readability, and powerful built-in 

libraries. We chose Python for this research paper because 

of its ease of use and availability of libraries specifically 

designed for data analysis. 

Section 5.2- OpenAI API 

The OpenAI API is a language model API that allows 

developers to access state-of-the-art natural language 

processing (NLP) models. In this research paper, we used 

the OpenAI API to generate responses to the programming-

related questions posed to ChatGPT. The API enabled us to 

train ChatGPT on programming-related texts and generate 

responses that were specific to each programming 

language. 

Section 5.3 - MOSS API 

The MOSS API is a web service provided by Stanford 

which is a tool used to determine code similarity. It’s often 

used for plagiarism detection. This tool is discussed in 

section 3.3. Mosspy is the interface used to access the 

service as an API and automate the querying of the service. 

Section 5.4- JSON 

JSON (JavaScript Object Notation) is a lightweight data-

interchange format widely used for data exchange between 

different programming languages. We used JSON to store 

and exchange the data collected on ChatGPT's responses to 

programming-related questions. JSON's simplicity and 

flexibility made it easy to store and manipulate the data, 

facilitating the analysis process. 

Section 5.5- Matplotlib 

Matplotlib is a popular data visualization library in Python 

used to create a wide range of graphs and charts. In this 

research paper, we used Matplotlib to visualize the data 

collected on ChatGPT's responses to programming-related 

questions. Matplotlib's flexibility and ease of use enabled 

us to create informative and visually appealing graphs and 

charts, making it easier to present our findings. 

 

6.  RESULTS 
Section 6.1- Cosine Similarity 

For cosine similarity, a text extraction and code extraction 

tool were used to grab only the text-based segments within 

each answer. Thus, for these scores the code was 

disregarded. The cosine similarity was tested only on the 

extracted text. The same was done to the ChatGPT answers 

to maintain consistency when comparing the text 

extractions.  

It should be noted that the code extraction only included 

lines of code which exist outside of a textual paragraph. 

Code snippets were maintained within a paragraph as they 

contribute to the overall semantics of the text involved. 

Consider the following: 

    “The meaning of a <code> yield </code> statement is…”      

The yield keyword is maintained in this textual analysis. 

The code tags are also maintained, as this gives extra 



insight to the semantics of the word they surround. This 

also shores up the case in which code is included in-

paragraph which extends beyond keywords. 

The cosine similarity scores between Stack Overflow and 

ChatGPT answers per question were compared to evaluate 

the similarity of a higher and lower rated answer. The top 

five answers per question were evaluated among the three 

languages: Java (Figure 6-1), JavaScript (Figure 6-2), and 

Python (Figure 6-3). 

It is worth noting that the results for the top five answers, 

denoted in figures 6-4, 6-5, and 6-6 were conducted on a 

sorting algorithm based on the cosine similarity score. 

Thus, on a scale of highest to lowest cosine scores, the 

600th question’s highest rated scored at around 0.4 

similarity. Relatively consistent across all languages, the 

top answer per question had roughly a higher score than the 

fifth question, denoting top answers are most like ChatGPT 

answers. 

The top Stack Overflow answers were compared to 

evaluate the relative difference between scores of Java, 

Python, and JavaScript, as seen in figure 6-7. The scores 

were sorted from highest to lowest scores to indicate the 

overall denotation of the scores. Although each language is 

relatively similar in scores, java tends to have higher scores 

compared to JavaScript.  

While looking at figures 6-4 through 6-7, it’s worth noting 

the distribution of ratings given on Stack Overflow. The 

range of quartiles of the ratings in the aggregated set are: 

Q1: 3, Q2: 10, Q3: 43, and Q4: 34634. The quartiles on the 

individual datasets are as follows: 

- Python: Q1: 4, Q2: 15, Q3: 70, and Q4: 17604, Min: -36 

- Java: Q1: 2, Q2: 8, Q3: 34, Q4: 34634, Min: -57 

- JavaScript: Q1: 2, Q2: 8, Q3: 36, Q4: 16150, Min: -74 

 

 

Figure 6-1: A histogram representing the cosine similarity scores 

comparing ChatGPT answers to Stack Overflow answers for the 

same prompt within the Java tag. The x axis represents the cosine 

similarity score, and the y axis represents the frequency of 

answers. 

 

 

 

 

Figure 6-2: A histogram representing the cosine similarity scores 

when comparing ChatGPT answers to Stack Overflow answers for 

the same prompt within the JavaScript tag. The x axis represents 

the cosine similarity score, and the y axis represents the frequency 

of answers. 

 

 

 

Figure 6-3: A histogram representing the cosine similarity scores 

when comparing ChatGPT answers to Stack Overflow answers for 

the same prompt within the Python tag. The x axis represents the 

cosine similarity score, and the y axis represents the frequency of 

answers. 

 

 

 

 

 

 



 

 

 

 

 

Figure 6-4: Cosine similarity for each question’s top-five-scored 

answers when ordered from highest to lowest score for Java 

tagged posts in Stack Overflow. The x axis represents each 

question, and the y axis represents the cosine similarity score. 

 

Figure 6-5 Cosine similarity for each question’s top-five-scored 

answers when ordered from highest to lowest score for Javascript 

tagged posts in Stack Overflow. The x axis represents each 

question, and the y axis represents the cosine similarity score. 

 

 

 

 

 

 

 

 

 

 

Figure 6-6 Cosine similarity for each question’s top-five-scored 

answers when ordered from highest to lowest score for Python 

tagged posts in Stack Overflow. The x axis represents each 

question, and the y axis represents the cosine similarity score. 

 

Figure 6-7: Cosine similarity for each question’s top-scored 

answers when ordered from highest to lowest score for Java, 

Javascript, and Python tagged posts in Stack Overflow. The x axis 

represents each question, and the y axis represents the cosine 

similarity score. 

 

 

 

 

 



Section 6.2- Dale-Chall Formula 

The Dale-Chall Formula under the Textstat library, is used 

to determine readability scores for ChatGPT vs Stack 

Overflow. The Dale Chall incorporates a 3000 word look 

up table and returns a relative grade level for the text 

document. Textual preprocessing, as described in section 

6.1, was applied when evaluating these scores. For 

languages such as Java, Dale-Chall scores for Stack 

Overflow and ChatGPT were most frequent between scores 

8.0-10.0 as seen in Figure 6-8. Languages such as Python 

and JavaScript included similar results averaging around 

8.0-10.0. The frequency of Stack Overflow scores in total 

are larger than those of ChatGPT due to the larger number 

of stack overflow answers used per question.  

 

Figure 6-8: A comparison of Dale-Chall readability between Stack 

Overflow user answers and ChatGPT answers, with the Dale-

Chall score on the x axis and frequency on the y axis. 

 

Section 6.3- Flesch Reading Ease 

The Flesch reading ease test under the Textstat library is an 

aid in determining relative readability. Higher scores 

indicate easier material, and lower scores determine 

material directed toward professionals. Like cosine similarity, 

the results were conducted on a sorting algorithm based on the 

Flesch reading score. Textual preprocessing, as described in 

section 6.1, was applied when evaluating these scores. The 

Flesch reading ease test demonstrated peak frequency of 

scores around 60-70 for Java in both Stack Overflow and 

ChatGPT answers as shown in figure 6-9. Languages such 

as Python and JavaScript peaked closer to 70, with denotes 

that Python and JavaScript have answers that are easier to 

read opposed to Java, according to Flesch reading ease. The 

frequency of Stack Overflow scores in total are larger than 

those of ChatGPT due to the larger number of stack 

overflow answers used per question. 

 

Figure 6-9: A comparison of Flesch readability between Stack 

Overflow user answers and ChatGPT answers, with the scores on 

the x axis and frequency on the y axis. 

 

Section 6.4- Automated Readability Index 

The Automated Readability Index, ARI, under the Textstat 

library is an aid in determining relative readability. The 

ARI returns a grade level which is needed to understand the 

text document. Textual preprocessing, as described in 

section 6.1, was applied when evaluating these scores. 

Stack Overflow responses for the language, Java, had a 

peak frequency count around 10, and ChatGPT peaked 

slightly higher around a score of 13, demonstrated in figure 

6-10. Languages such as Python and JavaScript peaked in 

frequency count around a score of 10-11 for both ChatGPT 

and Stack Overflow answers. Python and JavaScript had a 

greater number of scores between 15-20 for ChatGPT 

answers than the ChatGPT answers had for java. The 

frequency of Stack Overflow scores in total are larger than 

those of ChatGPT due to the larger number of stack 

overflow answers used per question. 

 

Figure 6-10: A comparison of ARI readability between Stack 

Overflow user answers and ChatGPT answers s, with the ARI 

score on the x axis and frequency on the y axis. 

 



Section 6.5- MOSS scoring 

To complement section 6.1, MOSS scoring is an attempt at 

evaluating the semantics of the code involved in an answer. 

The code which wasn’t embedded in a paragraph was 

evaluated for MOSS scoring. Consider the following: 

    “Here is an example of an <code>if</code> statement: 

     <code> 

        string = ‘hello’ 

        if string == ‘hello’: 

 print(‘world!’) 

     </code>” 

In the above example, only the content between the second 

set of code tags is isolated and evaluated. This 

preprocessing applies to both the ChatGPT generated 

solution and all Stack Overflow solutions. 

Results here are sparse. Whilst looking at the Python 

dataset. Of the 1100 ChatGPT solutions, 1064 of them 

contained code exclusive from paragraph content. Only 88 

of these solutions were flagged for code similarity. Some of 

these solutions had multiple flags within their respective set 

of Stack Overflow solutions, leading to a total of 131 flags 

for code similarity. 

To provide further analysis, the quartiles of all the ratings 

associated with Stack Overflow answers were generated. 

The range of these quartiles are [-36,4], [5,15], [16, 70], 

[70, 17604]. Of the 134 moss scores, 13 were associated 

with Stack Overflow answers with ratings in the first 

quartile. 28 were associated with answers in the second 

quartile.  40 with answers in the third quartile, and 53 with 

answers in the fourth quartile. 

Data was not gathered for Moss scores with respect to Java 

and JavaScript tags. This is discussed further in limitations. 

 

7. ANALYSIS 
In this section, we present the results of our analysis of 

ChatGPT's responses to programming-related questions. 

We focus on two primary measures of performance: 

readability and cosine similarity. We compare the 

readability scores of ChatGPT's responses to those of 

human-generated responses from Stack Overflow and 

examine the cosine similarity between the two sets of 

responses. Finally, we draw higher-level inferences from 

these results. Based on our analysis, we draw the following 

higher-level inferences: 

ChatGPT can generate responses to programming-related 

questions that are similar in readability to Stack Overflow 

responses. However, there is room for improvement in 

ChatGPT's response generation to make it easier to read 

when compared to what is typical of Stack Overflow.  

The cosine similarity measures show that ChatGPT's 

responses are very similar to human-generated responses 

that have a higher rating on Stack Overflow. This indicates 

that ChatGPT can accurately predict programming concepts 

and can generate responses that are those that are favored 

on Stack Overflow.  

The sparse results given for MOSS scoring don’t lead to 

meaningful analysis. It is a question whether this is in part 

to the (lack of) sensitivity the algorithm provides or if more 

data needs to be gathered. The former is more likely – 

when counting the amount of MOSS similarity flags 

determining whether a solution to Stack Overflow question 

is similar to another solution to the same question, the flag 

count is pushed from 134 to 783. To give context, the total 

amount of solutions in the Python dataset is 13,958. 

It is worth noting that of the MOSS flags related to a 

ChatGPT solution, more than two-thirds of them have a 

rating that is greater than 16; they lie in either the third or 

fourth quartile of the ratings distribution.  

 

8. LIMITATIONS 
There were a few limitations in gathering the data for this 

study, much of which had to do with time, number of 

resources, and the capabilities of the resources for 

analyzing the data. One such limitation was Open AI’s 

API, which was slow to generate answers for the Stack 

Overflow questions. Also, this resource required payment 

after a free trial usage, so we were only able to gather data 

for a few thousand questions. That said, the amount of data 

that was gathered did provide good insight to how 

ChatGPT answers compare to Stack Overflower’s user 

generated answers. Based on the trends shown above, more 

data would help solidify those claims.  

Similarly, the API we used for determining MOSS 

similarity was not timely in generating results. The web 

service offers no documentation on call limits. The 

thresholds of throttling the calls per API key and per IP 

address are unclear. With a script that cycles through a set 

of five API keys in alternating order, the number of calls 

per day ranged from 100 to 250. Due to the time constraints 

of this project and the need to sequentially produce 

ChatGPT answers, we did not have time to measure MOSS 

scores for the Java and JavaScript datasets. 

With more time and resources, a larger scale of this study 

could be carried out, providing more conclusive data for 

analysis. 

When considering the behaviors of Stack Overflow users, it 

should be noted that users who post less frequently will 

often respond to more complex problems with an accepted 

response, whereas more common users make up a 

significant number of accepted responses. This variety in 

behavior could produce varying responses to post 

questions; however, ChatGPT can be regarded as a single 

entity on its own. This single entity has a style and 

approach regardless of the question. It is currently unclear 

the extent to which this affects interpreted accuracy to the 

semantics of a given answer. 



 

9. CONCLUSIONS 
ChatGPT is a relatively new deployment. There is still a lot 

of uncertainty regarding its ability to produce readable and 

similar results. This study aims at looking at the gap 

between solutions provided by it and those expected 

through Stack Overflow. 

We analyzed ChatGPT's responses to programming-related 

questions for three programming languages: Python, 

JavaScript, and Java. Our analysis focused on two primary 

measures of performance: readability and cosine similarity. 

We compared ChatGPT's responses to these Stack 

Overflow responses from users and drew higher-level 

inferences from the results. 

Our analysis showed that ChatGPT's responses had similar 

readability scores to the user responses which had a higher 

rating on the platform, indicating that ChatGPT can 

generate responses that are as easy to comprehend. 

However, there is room for improvement in ChatGPT's 

response generation to make this easier. The cosine 

similarity measure showed that ChatGPT's responses are 

highly alike to these user responses which had a higher 

rating on the platform, indicating that ChatGPT can predict 

programming concepts and can generate responses that are 

similar and complete. 

These findings have important implications for the field of 

programming and natural language processing. ChatGPT's 

ability to generate similar and complete responses to 

programming-related questions has significant potential for 

use in education, technical support, and other applications 

where programming knowledge is necessary. Additionally, 

the findings of our study highlight the need for ongoing 

research to improve the readability of ChatGPT's responses, 

enabling it to generate responses that are both similar to 

Stack Overflow and easy to read. 

In conclusion, our analysis of ChatGPT's responses to 

programming-related questions provides valuable insights 

into the potential of ChatGPT in the field of programming 

and natural language processing. We hope that our findings 

will inspire further research in this area and contribute to 

the development of more sophisticated and effective natural 

language processing systems. 

 

10. CONTRIBUTIONS 
Alan McKay 

Developed the primary script used to gather information 

from Stack Overflow. This includes the development of the 

schema used to contain our data while also declaring which 

elements of an API call are important. 

Developed the primary script used to interface with the 

ChatGPT API including how this script interfaces with the 

data structures involved. Gathered the ChatGPT solutions 

for both the Python and JavaScript dataset. 

Developed the script that interfaces with the MOSS API. 

This includes how the script interfaces with the data 

structures involved. Sole contributor to any sections 

pertaining to MOSS within this research paper. 

Developed the helper functions used to preprocess the data 

for score evaluation. 

Gathered the sources used in the related works section. This 

includes getting a good feel for what the papers are about 

and how they are related to this research. 

Guided the team’s progress and decision making in terms 

of how to handle the data involved. 

Hayden Westphal 

Hayden played a key role in the data collection phase of 

this research project, where Hayden helped to collect a 

dataset of 1,000 programming-related questions for one of 

the three topics. In addition, Hayden also contributed to the 

analysis of the data by developing a Python script that 

utilized matplotlib to create histograms for the various 

measures that we calculated, including cosine similarity, 

Flesch readability, Dale-Chall readability, and ARI 

readability. These histograms were essential in providing a 

visual representation of the data and helped to support the 

conclusions that we drew from the analysis.  

Jordyn Iannuzzelli 

Throughout the project, Jordyn has contributed to the 

overall planning behind the entirety of the project as well as 

the deliverable submissions. A focus Jordyn has worked on 

in prior deliverables was finding libraries that can help 

generate scores for cosine similarity and readability 

metrics. Since the last deliverable, Jordyn has worked to 

gather all the cosine similarity scores, Dale-Chall scores, 

Flesch Reading scores, and Automated Readability Index 

scores for the generated questions and answers. Jordyn has 

contributed to producing resulting graphs to display some 

of the logistics behind the scores across the three 

languages. 

Nathan Hine 

Overall, Nathan helped generate ideas for how to tackle 

several roadblocks throughout the project, from gathering 

data from ChatGPT to analyzing the data. With ChatGPT, 

he helped to discover the OpenAI API and work the 

functions within to generate answers for the proposed 

questions from Stack Overflow, which was fine tuned into 

a working data collection system with help from the rest of 

the group. Nathan also tackled the methods and limitation 

sections of the paper, researching the formulas and various 

methods used for data analyzation (not including Moss 

similarity, that was Alan). He helped with other smaller 

parts of the paper, such as consistency in writing and 

formatting. Since the last deliverable, Nathan has helped 



with composing the paper, ensuring consistency in 

formatting throughout, aiding in generating parameters for 

data presentation, and aiding in small tasks with content for 

the paper. 

 

11. REFERENCES 
[1] OpenAI. 2021. ChatGPT. OpenAI Blog. (2021). 

https://openai.com/blog/chatting-with-ai/ 

[2] Stack Exchange. 2019. Stack Exchange API 

Documentation. https://api.stackexchange.com/docs 

[3] BulkGPT: Bulk Prompts for GPT-3 (2023). Retrieved 

from 

https://chrome.google.com/webstore/detail/bulkgpt-

bulk-prompts-

for/emamaaonhmidkfldhlmpfgmdgjgonhmg 

[4] Schleimer, S., Wilkerson, D., &amp; Aiken, A. 

(2003, June).  Winnowing: local algorithms for 

document fingerprinting. ACM Digital Library. 

Retrieved April 25, 2023, from https://dl-acm-

org.proxy.lib.uiowa.edu/doi/abs/10.1145/872757.  

[5] Wang, S., Chen, T.-H., & Hassan, A. E. (2018). 

Understanding the factors for fast answers in 

technical Q&A websites: An empirical study of four 

stack exchange websites. Empirical Software 

Engineering: An International Journal, 23(3), 1552-

1593.  

[6] Aiken, A. (n.d.). Moss (Measure of Software 

Similarity). Retrieved March 7, 2023, from 

https://theory.stanford.edu/~aiken/moss/ 

[7] McKay, A., Westphal, H., Iannuzzelli, J., &amp; 

Hine, N. (2023, March 1). web_mining_project. 

GitHub. Retrieved April 26, 2023, from 

https://github.com/alanmmckay/web_mining_project.

git

 

https://openai.com/blog/chatting-with-ai/
https://api.stackexchange.com/docs
https://chrome.google.com/webstore/detail/bulkgpt-bulk-prompts-for/emamaaonhmidkfldhlmpfgmdgjgonhmg
https://chrome.google.com/webstore/detail/bulkgpt-bulk-prompts-for/emamaaonhmidkfldhlmpfgmdgjgonhmg
https://chrome.google.com/webstore/detail/bulkgpt-bulk-prompts-for/emamaaonhmidkfldhlmpfgmdgjgonhmg
https://theory.stanford.edu/~aiken/moss/

